1 Midwest Laboratories, Inc:

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com

Lab \#	70093634	Report of Analysis				Report Number: 22-104-4112					
	Account: 29186	DAVE POWE SOCRRA 3910 W WEBSTER ROYAL OAK MI 48073				Robert Ferris Account Manager 402-829-9871					
Date Sampled: Date Received: Sample ID:		$\begin{aligned} & \hline \text { 2022-03-23 } \\ & \text { 2022-04-01 } \\ & \text { COMPOST SAMPLE } \end{aligned}$									
		Compost									
									Analysis (as rec'd)	Analysis Total content, lbs per ton (as rec'd) (dry weight)	
NUTRIENTS											
Nitrogen											
Total Nitrogen				\%	0.68	1.71	13.6				
Organic Nitrogen				\%	0.66	1.65	13.1				
Ammonium Nitrogen				\%	0.005	0.013	0.1				
Nitrate Nitrogen				\%	0.02	0.05	0.4				
Major and Secondary Nutrients											
Phosphorus				\%	0.06	0.15	1.2				
Phosphorus as P2O5				\%	0.14	0.35	2.8				
Potassium				\%	0.18	0.45	3.6				
Potassium as K2O				\%	0.22	0.55	4.4				
Sulfur				\%	0.06	0.15	1.2				
Calcium				\%	1.40	3.52	28.0				
Magnesium				\%	0.25	0.63	5.0				
Sodium				\%	0.030	0.075	0.6				
Micronutrients											
Iron				ppm	2360	5936	4.7				
Manganese				ppm	119	299	0.2				
Boron				ppm	< 100	----	----				
OTHER PROPERTIES											
Moisture				\%	60.24						
Total Solids				\%	39.76		795.2				
Organic Matter				\%	19.40	48.79	388.0				
Ash				\%	20.20	50.80	404.0				
Total Carbon				\%	10.15	25.53					
Chloride				\%	0.06	0.15					
pH					7.1						
Conductivity 1:5 (Soluble Salts)				$\mathrm{mS} / \mathrm{cm}$	2.43						

13611 B Street • Omaha, Nebraska 68144-3693 • (402) 334-7770 • FAX (402) 334-9121 • www.midwestlabs.com

Lab \#	70093634	Biological \& Physical Properties				Report Number: 22-104-4112 Robert Ferris Client Service Representative 402-829-9871				
	Account: 29186	DAVE POWE SOCRRA 3910 W WEBSTER ROYAL OAK MI 48073								
Date Sampled: Date Received: Sample ID:		$\begin{aligned} & \hline 2022-03-23 \\ & 2022-04-01 \\ & \text { COMPOST SAMPLE } \end{aligned}$								
			Compost							
Analysis Analysis (as rec'd) (dry weight)					Units	Detection Limit	Method			
Biological Properties										
Germination						100		\%	1	TMECC 05.05A
Germination Vigor			100		\%	1	TMECC 05.05A			
CO_{2} OM Evolution			0.08		$\mathrm{mgCO}_{2}-\mathrm{C} / \mathrm{g}$	M/day 0.01	TMECC 05.08B			
CO_{2} Solids Evolution			0.13		$\mathrm{mgCO}_{2}-\mathrm{C} / \mathrm{g}$	S/day 0.01	TMECC 05.08B			
Fecal Coliform				1	$\mathrm{mpn} / \mathrm{g}$	0.2	EPA 1681			
Salmonella				< 1.2	$\mathrm{mpn} / 4 \mathrm{~g}$	1.2	TMECC 07.02			
Stability Rating			Stable		N/A	N/A	TMECC 05.08B			
Physical Properties										
Bulk Density (Loose)			1095		lbs/cu yard	1	WT/VOL			
Bulk Density (Packed)			1719		lbs/cu yard	1	WT/VOL			
Film Plastics			n.d.		\%	0.1	TMECC 03.08			
Glass Fragments			n.d.		\%	0.1	TMECC 03.08			
Hard Plastics			n.d.		\%	0.1	TMECC 03.08			
Metal Fragment			n.d.		\%	0.1	TMECC 03.08			
Sharps			absent		---	0.1	TMECC 03.08			
Max. Particle Length				1.5	inches	N/A	TMECC Sieve			
Sieve \% Passing 3"				100	\%	0.01	TMECC Sieve			
Sieve \% Passing 2"				100	\%	0.01	TMECC Sieve			
Sieve \% Passing 1.5"				100	\%	0.01	TMECC Sieve			
Sieve \% Passing 1"				100	\%	0.01	TMECC Sieve			
Sieve \% Passing 3/4"				100	\%	0.01	TMECC Sieve			
Sieve \% Passing 5/8"				100	\%	0.01	TMECC Sieve			
Sieve \% Passing 3/8"				91	\%	0.01	TMECC Sieve			
Sieve \% Passing 1/4"				79	\%	0.01	TMECC Sieve			

Compost Results Interpretations
Page 1

Report \#: DATE RECEIVED:

22-104-4112 2022-04-01

Organic Matter \%
19.40 As Received
48.79 Dry Weight

Compost is a significant source of Organic Matter, which is an important supplier of carbon. Organic Matter improves soil and plant efficiency by improving soil physical properties, providing a source of energy to beneficial organisms, and enhancing the reservoir of soil nutrients.

C/N Ratio

14.9:1

20-30 indicates an ideal range for the initial compost process
10-20 indicates an ideal range for a finished compost.

All organic matter is made up of substantial amounts of carbon with lesser amounts of nitrogen. The balance of these two elements is called the Carbon/Nitrogen Ratio. For the best performance, the compost pile requires the correct proportion of carbon for energy and nitrogen for protein production. If the $\mathrm{C}: \mathrm{N}$ ratio is too high (excess carbon) decomposition slows down. If the $\mathrm{C}: \mathrm{N}$ ratio is too low (excess Nitrogen) the compost pile could be difficult to manage

Moisture \%
60.24
$<35 \%=$ Indicates overly dry compost
$>55 \%=$ Indicates overly wet compost

Moisture Percent is the measure of water present in the compost and expressed as a percentage of total weight. Moisture present affects handling and transport. Overly dry will be light and dusty while overly wet will be heavy and clumpy. A desirable moisture content of finished compost will range between 40 to 50%.

Compost Results Interpretations

Page 2

Report \#: DATE RECEIVED:

Conductivity or Soluble Salts measures the conductance of electrical current in a liquid compost slurry. Excessive soluble salt content in a compost can prevent or delay seed germination and proper root growth. Conductivity analysis is done on a 1:5 basis.

Conductivity 1:5	
2.4	
Conductivity Level	Interpretation
Greater than 10	Very High nutrient content. Use for Ag Applications
$5-10$	High nutrient content. Use for Ag Applications
$3-5$	Higher than desirable for salt sensitive plants, some loss of vigor
$0.6-3$	Desirable range for most plants
$0.3-0.6$	Ideal range for greenhouse growth media
$0.0-0.3$	Very Low: Indicates very low nutrient status: plants may show deficiencies.

Compost Results Interpretations Page 3		Report \#: DATE RECEIVED:	$\frac{22-104-4112}{2022-04-01}$
pH Value			
7.1	0 to 14 scale with 6 to 8 as normal pH levels for compost		
A pH in the 6 to 8 pH range indicates a more mature compost			
pH measures the acidity or alkalinity of the compost, and is a measurement of the hydrogen ion activity of a soil or compost on a logarithmic scale. The pH scale ranges from 0 to 14 and 7 indicates a neutral pH . Growing media with a higher pH or pH greater than 7 can benefit from a compost that has a more acidic pH or pH below 7 . This type of application will possibly lower the soil pH making the soil more conducive to plants that thrive in a more acidic soil condition.			

Nutrient Index (Ag Index)
>10
The Nutrient Index normally runs between 1 and 10.

The Nutrient Index is obtained by dividing the total nutrients (N, P, K) by the amount of salt (Sodium and Chloride). The higher the Nutrient Index the less chance of having a toxic buildup of Sodium (salt) in the soil.

AG INDEX CHART										
salt injury possible	use on soils with excellent drainage characteristics, good water quality and low salts				you may use on soils with poor drainage, poor water quality, or high salts					$\begin{aligned} & \text { for } \\ & \text { all soils } \end{aligned}$
1	2	3	4	5	6	7	8	9	10	> 10

Nutrients (N+P205+K20)		
2.62	Average Nutrient Content Dry Weight	$<2=$ Low, $>5=$ High
$0.5-0-0$	Rating As Received	

The most commonly used compost data is the amount of Nitrogen, Phosphate, and Potash (abbreviated as N,P,K) present and the information is similar to that found in common fertilizers. If a compost result has the rating 1-2-2 it means that the compost has 1% Nitrogen, 2% Phosphate and 2% Potash. Most compost tests will have a average nutrient level ($\mathrm{N}+\mathrm{P}+\mathrm{K}$) of $<5 \%$.

－－

$$
\begin{array}{lll}
\text { Chromium (total) } & 12.8 & 32.2
\end{array}
$$

$$
\begin{aligned}
& \text { Molybdenum (total) } \\
& \text { Nickel (total) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nickel (total) } \\
& \text { Selenium (total) }
\end{aligned}
$$

Zinc (total) 90／t0／ZZOZ－เบम 90／t0／ZZOZ－LSE」

${ }_{29186}^{\text {senio }}$
REPORT NUMBER
(ן!ıoł) ગ!uәs.૪
Copper (total)

Verified－

шол•sqeן！səмр！
буүбш
бу/бш
бу/бш
бу/бш łsodmoう zzoz 22－104－4112

s!!un

SISATVNV HO LHOdGU

$$
\begin{aligned}
& S \angle \cdot t \\
& 0 \cdot \angle Z
\end{aligned}
$$

$$
9.8 \mathrm{Lt}
$$

$$
\begin{aligned}
& \text { p•u } \\
& 6 . \angle
\end{aligned}
$$

$$
\begin{aligned}
& 62 \\
& 0.2
\end{aligned}
$$

$$
\text { бу/бш } \quad \text { p•u }
$$

$$
\begin{aligned}
& 68 \cdot 1 \\
& \angle O 1
\end{aligned}
$$

Z'Lt

$$
1 \cdot \varepsilon
$$

$$
\cdot p \cdot u
$$

$$
\mathrm{s} \cdot 6
$$

-p•u
(|ełoł) Kınoxəw
$z z 0 z$ to $10 . d y$

$$
\begin{aligned}
& \text { EPA } 6010 \\
& \text { EPA } 6020
\end{aligned}
$$

$$
\mathrm{mg} / \mathrm{kg}
$$

$$
\begin{array}{r}
0.50 \\
1.00 \\
0.05 \\
5.0 \\
1.0 \\
1.0 \\
10.0 \\
2.0 \\
1 \\
0.5
\end{array}
$$

